Karel Lambert (born 1928) is a philosopher and logician at the University of California, Irvine and the University of Salzburg. He has written extensively on the subject of free logic, a term which he coined[1].
Contents |
Lambert's Law is the adjustment of a given standard predicate logic such as to relieve it of existential assumptions, and so make it a free logic. Taking Bertrand Russell's predicate logic in his Principia Mathematica as standard, one replaces universal instantiation, , with universal specification . Thus universal statements, like "All men are mortal," or "Everything is a unicorn," do not presuppose that there are men or that there is anything. These would be symbolized, with the appropriate predicates, as and , which in Principia Mathematica entail and , but not in free logic. The truth of these last statements, when used in a free logic, depend on the domain of quantification, which may be the null set.